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That this is so can be seen continuing in z\ variable 
the identity (4.9). I t should be emphasized that (4.11) 
is an identity derived by continuation in z\; the validity 
of (4.11) does not depend on the assumption of unitarity. 

V. CONCLUDING REMARKS 

We have so far shown that certain amplitudes with 
complex singularities do not yield cuts as a direct 
consequence of the Regge continuation. The problem 
remains as to what mechanism can produce cuts if they 
are present. Amati et al.2 have suggested that ordinary 
elastic unitarity in the crossed channel may yield cuts. 
But it is obviously insufficient to retain only elastic 
unitarity in calculating ImA(s,t). The optical theorem 
says IrrL4 ($,£== 0)~so- to ta l, where o-total is the total 
cross section, not just elastic cross section ael. Of course, 
ael~l/\ns, which simply expresses the shrinkage of 
the diffraction peak. I t is not enough to calculate 
ImA (s,t) from elastic unitarity alone; one must include 
all the inelastic channels, which become available at 

large s. Thus, 

ImA (s,t) = ImA <*> (s,t)+ImA(2) (s,t), 

where the first part comes from elastic, and the second 
from inelastic unitarity. I t is perfectly consistent that 

ImAM(s)~s°M/)ns, 

while ImA(s,t)^sait). The inelastic contribution just 
cancels the apparent cut coming from the elastic 
contribution. Thus, that argument is inconclusive. 

I t would be most satisfactory if we could say there are 
no cuts. However, the situation is inconclusive. If the 
cuts are present in some channel, they would be present 
in all channels with which this channel communicates 
if the sharing theorem continues to hold, and there is 
no reason to think that it would not. I t may well 
happen that the strength of the branch cut might be 
greater for processes with prominent anomalous 
thresholds. 

In concluding, we would like to emphasize that 
Regge amplitudes, even with complex singularities, are 
remarkably well behaved, and a calculation program 
based on them would thus probably circumvent to a 
considerable degree the complexities associated with 
complex singularities. 
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A model is constructed in which there are N equally massive vector mesons, which are self-consistent 
bound states of pairs of these same vector mesons. It is shown that N must be equal to the number of 
parameters of some compact, semisimple Lie group, and that the renormalized coupling constants must be 
proportional to the structure constants of the group. 

TH E strong interactions are known to exhibit 
isotopic spin symmetry, which is based on the 

group SU2. There is also evidence that a further sym
metry described by SU3 exists, although this further 
symmetry is certainly much more approximate. In this 
paper, we raise the question of whether these sym
metries might have a simple dynamical origin. 

A phenomenological symmetry related to a Lie group 
is understood to mean two things. First, the mass 
spectrum of particles which have the same spin and 

parity should show a clustering which can be identified 
with the multiplet structure corresponding to repre
sentations of the group. Second, the S-matrix elements, 
and in particular, the renormalized coupling constants 
referring to different particles from the same multiplet 
should be related, approximately, through Clebsch-
Gordan coefficients. I t is clear that the origin of such a 
phenomenological symmetry could be established only 
through the development of a rather complete under
standing of strong-interaction dynamics. Nevertheless, 
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there is a possibility that the examination of simple 
models might help to clarify the problem. We are en
couraged in this investigation by the observation that 
the ratios of the masses and coupling constants of 
particles which have the same spins and parities are 
somewhat easier to calculate than are other quantities. 

We consider here a very simple model in which it is 
assumed that there are a number (N) of vector mesons 
which have the same mass. That is, it is assumed that 
the mass spectrum does exhibit a clustering effect. Then, 
with a number of additional assumptions that will be 
made clear, it will be shown that a Lie group can be 
associated with these particles. The essential feature of 
the model is that only these N vector mesons are 
introduced. They are all supposed to arise as self-
consistent bound states of pairs of vector mesons, and 
the binding force is mediated by the exchange of single 
vector mesons. In this paper we shall assume that the N 
states are exactly degenerate. 

We assume the spatial invariances usually associated 
with strong interactions, as well as invariance under 
charge conjugation. We may then represent the particles 
by real vector fields Aa, a~ 1, • • •, N. The three-meson 
vertex has the form 

g(Fabc6+Fabc
f0')AaAbAc (1) 

where 0 and 0f are certain functions of the momenta. 
Symmetry with respect to interchange of all three 
particles leads to the result that there are only two 
independent terms, and that Fabc and Fabc' are imagi
nary and antisymmetric, one in two, the other in all 
indices. We shall investigate only the case that 
Fabc =Fabc 

Two mesons can interact by exchanging another 
between them. The Born-approximation scattering 
amplitude is proportional to 

Vab -FadrFb -FacrFb (2) 

in states which are antisymmetric in the spatial vari
ables. To the extent that the sign of the force can be 
deduced from the "Coulombic" part of the interaction, 
it will be attractive between particles which have 
opposite charges, that is, when the expectation of 
Vab,cd is positive. In fact, the attraction is very singular 
at short distances, so we must cut it off at an effective 
mass value denoted by A. 

The problem of actually solving the partial-wave 
dispersion relations following, for example, the method 
of Zachariasen and Zemach,1 would be extremely com
plicated. Fortunately, we do not need to solve them; 
we only need to show that solutions having the desired 
properties exist. For this, it is sufficient to observe that 
if we have an attractive force, we can always adjust A 
so that a bound state of any desired mass—in particular, 
the vector-meson mass, which we take to be unity— 
could be obtained. The coupling constants for the bound 

FIG. 1. A graphical representation of Eq. (3). Another inter
pretation of Eq. (3) is that the renormalized coupling constants 
are considered to be generated by the simplest irreducible vertex 
part, with the "bare-coupling constants" set equal to zero. 

state to the two vector mesons are obtained from the 
residue of the bound-state pole. We do not examine the 
different helicity amplitudes of the bound-state pole, 
because these are sensitive to the way the cutoff is 
introduced. 

Since all the particles which are being bound together, 
and also all of the exchanged particles, have the same 
mass, it is clear that we can obtain N degenerate bound 
states only if V has N degenerate eigenvalues. More
over, the Fabs must themselves be the eigenvectors; 

^Fabs— Vab,cdFcds , (3) 

1 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 

where \ > 0 . Equation (3) can be pictured as in Figure 1. 
In addition, since the same residue will be obtained in 
each of these dynamically equivalent states, we can 
impose the normalization condition 

FabrFbas — drs. (4) 

In terms of elementary wave-mechanical ideas, this can 
be interpreted as saying that in each vector-meson 
state, the total probability of all virtual pairs is unity. 
The actual value of the residue must be g2, which leads 
to a second relation between g2 and A. 

There are %N(N—3) antisymmetric eigenvectors 
ypab1 of Vab,cd which are orthogonal to Fabs. We denote 
their eigenvalues by X* and the degeneracy by d{. There 
are, therefore, %N(N—3) vector states in which the 
dynamics is identical to that in the N self-consistent 
states, except that the effective strength of the force is 
multiplied by a factor X*/X. I t seems plausible that, for 
given values of g2 and A, the mass of a bound state 
would depend monotonically upon the eigenvalue of V. 
We must require that no other vector particles which 
have a lower mass (or even a slightly larger mass) than 
the N we started with should arise from the potential, 
because otherwise our model would not really be self-
consistent; we would have to start over again and 
include the extra particles from the beginning. We, 
therefore, require that 

X>X». (5) 

We shall see that this inequality is crucial to the deter
mination of the F's. 

I t is clear that strong interactions in states with 
other spins and parities might also arise, and if so, these 
other states ought to be incorporated into the model. 
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We ignore such states here, with the understanding that 
the generality of our conclusions depends on the validity 
of the assumption that the influence of other states upon 
the vector particles can be adequately represented by 
the single adjustable parameter A. 

We have now defined our model, and proceed to the 
determination of Fabc which satisfy the conditions (3), 
(4), and (5). We first observe that 

N\ = FbasVab,cdFcdS—2FbasFadrFbcrFcds • (6 ) 

Now, we have from the definition of the trace that 

Tr V^N\2+Zidi\i2, (7) 

but in our case, the explicit form (2) gives, with the 
help of (4) and (6), 

TvV2=2N-N\. (8) 

Therefore, it follows that 

X(X+l) = 2 - i V - 1 E ^ A , 2 , (9) 
so that 

X < 1 . (10) 

The equality can hold only if all Xz- vanish. 
Under the orthogonal transformations Aa=AbOab 

the equations (3) and (4) are covariant. For infinitesi
mal transformations Oa&=5a &+£€"£«&", the Fabc trans
form according to 

Fabc =Fabc+i*a fabc", 

fabcCi=FXbcGXaa+FaxcGXb(K-\-FabzGXca. (11) 

We shall now make a further assumption, that the 
interactions satisfy a nontrivial additive conservation 
law. For instance, we might assume that some of the 
particles have electric charges, and that charge is con
served at each vertex. This requirement gives additional 
information about the Fabc- I t is not clear whether this 
additional information is necessary, but it greatly 
simplifies our analysis. If we assume such an additive 
conservation law, we can make gauge transformations 
of the first kind which leave the Fabc invariant. In the 
representation in which real Aa are used, these gauge 
transformations are just a special case of the orthogonal 
transformations introduced above. If we assume the 
existence of r independent additive conservation laws, 
(for example, charge and hypercharge) the FabC will be 
invariant under an r parameter Abelian subgroup of ON-

We denote by Gab
A a generator of the Abelian gauge 

transformations. Then we have 

FXbCGxa
A-{-FaxcGXbA-{-FabzGXcA=Q. (12) 

If we multiply (12) by Fbad, and use the fact that 
GabA= —GbaA, we obtain 

GcdA=Vcd,abGab
A. (13) 

The generators Gab
A are eigenvectors of V with a unit 

eigenvalue. 
There are now two cases to be considered. If 

FbacGab
A=0, we have found another eigenvalue: XA= 1. 

Then, we see from (9) that X<1 , so that X<X^, and 
the condition (5) is violated. If, on the other hand, 
FbacGab

A?£0 for some c, we have X=1, so that all X; 
vanish. The completeness of the eigenvectors of V then 
allows us to write 

Vab,cd—FabrFdcr> ( 1 4 ) 

which can be rewritten as 

F abr-F cdr\£i bcr-T adri & carr bdr~ 0. (15) 

Equations (15) and (4) are the necessary and suffi
cient conditions for the FabC to be (apart from a factor i) 
the structure constants of a compact, semisimple Lie 
group. I t is evident that the rank of the group must be 
at least as great as r. If we assume that the N particles 
cannot be divided into subsets which interact only 
among themselves, in some representation, the group 
must be simple. 

I t may be of interest to observe that examples of Fabc 
which satisfy (3) and (4) but violate (5) are provided 
by the Clebsch-Gordan coefficients of many group 
representations. For example, for SUz, any representa
tion corresponding to an odd-integral value of the 
isospin T can be used. In particular, one calculates for 
T— 3, X= — 1; for T = 5 , X=+0.37 . For all T, in accord
ance with (13), in the state T'= 1 we have Xi= 1. 

Our conclusion is that a set of N degenerate vector 
mesons, which interact in accordance with the model 
set forth, can always be associated with a Lie group. 
Moreover, the association is necessarily with a par
ticular representation of the group, the adjoint repre
sentation. Note that this association with the adjoint 
representation is exactly the same as that implied by a 
Yang-Mills type of theory, in which invariance under 
a simple group of transformations is assumed at the 
very beginning.2-3 

Our model also leads to certain negative conclusions. 
We observe that X, and hence, the cutoff A, is inde
pendent of the group. This suggests that it might be 
hard to use an extension of the self-consistent model, 
in which an attempt was made to calculate an a priori 
value of A from dynamical arguments, to eliminate 
certain groups from consideration. One must keep in 
mind the possibility that, in addition to certain additive 
quantum numbers which might be supposed to be 
exactly conserved, there might be other additive 
quantum numbers which arose out of the strong inter
actions themselves. However, it would certainly be very 
hard to determine the number of such quantum num
bers from the self-consistency requirement. 
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